

SCREEN VISION

SV 1%-3%-5%-10%

INTELLIGENTE GEWEBE FÜR SONNENSCHUTZ

SV 1%-3%-5%-10%

NATTÉ-GEWEBEN, DAS **VISUELLEN KOMFORT** MIT **TRANSPARENZ** VEREINT

320 CM

ZUR NAHTLOSEN AUSSTATTUNG GROSSEN GLASFENSTERN

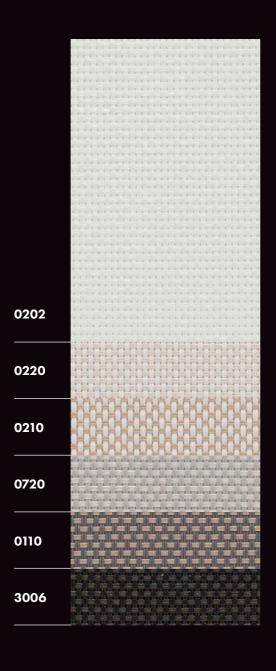
4 ÖFFNUNGSFAKTOREN

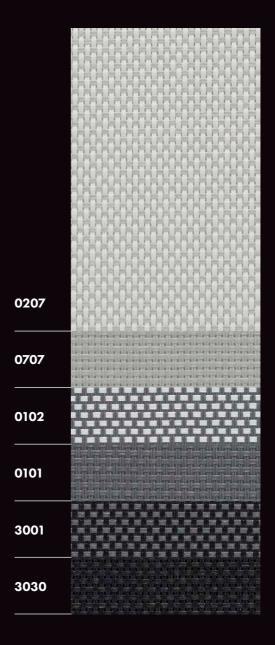
ZUR OPTIMIERUNG DES SONNENSCHUTZES ENTSPRECHEND DER AUSRICHTUNG DES GEBÄUDES

- Ausgezeichnete BLENDSCHUTZ: bis zu 99% DER LICHTSTRAHLUNG WERDEN GEFILTERT (SV 1%), Komfort Leistungsklasse 3 (guter Effekt) laut EN 14501
- MAXIMALE TRANSPARENZ (SV 10%) und TAGESLICHTEINFALL um den Energieverbrauch des Gebäudes zu reduzieren
- THERMISCHEN KOMFORT IM INNENBEREICH: bis zu 87% der Sonnenenergie werden gefiltert (gtot = 0.13 / Verglasung g = 0.32 und U = 1.1 W/m²K)
- ÖKONOMISCH: 3 BREITEN (200, 250 und 320 CM), um die Anfertigung der Stoffbahnen zu optimieren
- MECHANISCHE FESTIGKEIT, DAUERHAFTIGKEIT (test von 10.000 Zyklus, Klasse 3 gemäss Norm EN 13120), FORMSTABILITÄT: perfekte Plannlage auch in großen Abmessungen
- Gesundheit/Sicherheit: entspricht den Anforderungen für Einrichtungen mit Publikumsverkehr

TECHNISCHEN DATEN

	SV 1%		SV 3%		SV 5%		SV 10%		
Zusammensetzung	36% Glasfaser - 64% PVC				36% Glasfaser - 64% PVC				
Brandschutz- und Rauchklasse, und Testberichte	M1 (F) - NFP 92 503 B1 (DE) - DIN 4102-1 BS (GB) - 476 Pt 6 & 7 C Euroclass C-s3-d0 (EU nach EN 13823 & EN 14) - EN 13501-1 vorbereitet	FR (US) - NFPA 701 C UNO (IT) - UNI 9177 Brennwert: 15,7 MJ/kg (SV 1%: 6,44 MJ/m² - SV 3%: 6,04 MJ/m²)		M1 (F) - NFP 92 503 B1 (DE) - DIN 4102-1 BS (GB) - 476 Pt 6 & 7 Class 0 / BS (GB) - 5867 Euroclass C-s3-d0 (EU) - EN 13501-1 vorbereitet nach EN 13823 & EN 14716		IMO - MED 2014/90/EU *** FR (US) - NFPA 701 C UNO (IT) - UNI 9177 Brennwert: 15,7 MJ/kg (SV 5%: 5,89 MJ/m² - SV 10%: 5,49 MJ/m²)		
Gesundheit, Sicherheit	Greenguard® GOLD: Garantiert die Qualität der Innenluft (VOC) Resistenz gegen Bakterien: Mehr als 99% der Bakterien werden zerstört - ASTM E 2180				Greenguard® GOLD: Garantiert die Qualität der Innenluft (VOC) Resistenz gegen Bakterien: Mehr als 99% der Bakterien werden zerstört - ASTM E 2180				
Öffnungsfaktor	1%		3%		5%		10%		
Zurückhalten der UV-Strahlung	Bis zu 99%		Bis zu 98%		Bis zu 94%		Bis zu 90%		
Breiten	200 - 250 - 320 cm				200 - 250 - 320 cm				
Gewicht/m²	410 g ± 5% - ISO 2286 - 2 385 g ± 5% - ISO 2286 - 2			6 - 2	375 g ± 5% - ISO 2286 - 2 350 g ± 5% - ISO 2286 - 2			286 - 2	
Dicke		0,48 mm ± 5%	- ISO 2286 - 3		0,42 mm ± 5% - ISO	2286 - 3	0,45 mm ± 5% - ISO	2286 - 3	
Lichtechtheit (Blaumassstab bis 8)		7/8 - ISO 105 B02 (Fai	rbe Weiss nicht bewertet)		7/8 - ISO 105 B02 (Farbe Weiss nicht bewertet)				
Mechanische Festigkeit	Kettrichtung	Schussrichtung	Kettrichtung	Schussrichtung	Kettrichtung	Schussrichtung	Kettrichtung	Schussrichtung	
Zugfestigkeit (daN/5 cm) - ISO 1421	> 160	> 130	> 180	> 100	> 130	> 130	> 140	> 110	
Weiterreissfestigkeit (daN) - EN 18 7 5-3	≥ 5	≥ 3	≥ 5	≥ 3	≥ 4	≥ 4	≥ 5	≥ 3	
Faltfestigkeit (daN/5 cm) - ISO 1421**	≥ 70	≥ 70	≥ 70	≥ 70	≥ 50	≥ 50	≥ 50	≥ 40	
Zugdehnung (Kettrichtung und Schussrichtung)		< 5% - 1	SO 1421		< 5% - ISO 1421				
Rolllänge	Rollen von 33 lfm				Rollen von 33 lfm				
Bearbeitung	Pflegeanleitung, Konfektionshinweise: auf Anfrage				Pflegeanleitung, Konfektionshinweise: auf Anfrage				


Die technischen Eigenschaften und Qualitäten diesen Produkten entsprechen dem Tag der Ausstellung der vorliegenden Broschüre. Die Firma MERMET SAS behält sich das Recht vor, sie zu verändern, wobei lediglich die auf der Internetseite www.sunscreenmermet.com aufgeführten Angaben maßgebend sind. Die Firma MERMET SAS behält sich ebenfalls gegebenenfalls das Recht vor, diesen Produkten vom Markt zu nehmen, wenn aufgrund einer Weiterentwicklung der Vorschriften oder des Wissens und der Kenntnisse eine der nebenstehend aufgeführten technischen Eigenschaften oder Qualitäten fehlt oder unmöglich gemacht wird.
* Testberichte verfügbar: Bitte Mermet kontaktieren


- ** Interne Analyse, abgeleitet von ISO 1421 Standard
- *** Nur SV 10%

THERMISCHE UND OPTISCHE LEISTUNGSWERTE gemäss europäischer Norm EN 14501

		Optische Leistungswerte					
Farben	Gewebe			Gewebe + Verglasun	_		
	Ts	Rs	As	C : gv = 0,59	D : gv = 0,32	Tv	
SV 1% - OF 1%							
0202 Weiss	18	70	12	0,29 2	0,13 🔞	17	
0220 Weiss Linen	19	62	19	0,32 2	0,16 2	16	
0207 Weiss Perlen	15	57	28	0,39 🕕	0,26 2	13	
0707 Perlen	12	37	51	0,43 🕕	0,23 2	10	
0720 Perlen Linen	12	42	46	0,40 0	0,21 2	10	
0210 Weiss Sand	13	56	31	0,34 2	0,18 😉	10	
0102 Grau Weiss	8	33	59	0,45 🕕	0,25 😉	4	
0101 Grau	7	20	73	0,50 0	0,29 2	4	
0110 Grau Sand	6	24	70	0,48 0	0,27 😉	3	
3006 Charcoal Bronze	1	6	93	0,56 0	0,30 😉	2	
3030 Charcoal	2	5	93	0,56 0	0,31 😉	2	
3001 Charcoal Grau	1	9	90	0,54 0	0,30 😉	1	
SV 3% - OF 3%							
0220 Weiss Linen	21	62	17	0,31 2	0,15 😉	18	
0202 Weiss	18	70	12	0,28 2	0,13 🔞	17	
0207 Weiss Perlen	19	58	23	0,38 🕕	0,26 2	17	
0720 Perlen Linen	16	40	44	0,41 🕕	0,21 2	14	
0210 Weiss Sand	16	57	27	0,34 2	0,17 😉	13	
0707 Perlen	13	37	50	0,44 🕕	0,23 2	11	
0102 Grau Weiss	10	30	60	0,47 0	0,25 😉	7	
0101 Grau	9	20	71	0,51 0	0,28 2	5	
0110 Grau Sand	8	23	69	0,49 🕕	0,28 2	4	
3001 Charcoal Grau	3	8	89	0,54 0	0,31 2	3	
3006 Charcoal Bronze	2	6	92	0,55 0	0,31 2	2	
3030 Charcoal	2	5	93	0,55 0	0,32 2	2	

		Optische Leistungswerte						
Farben		Gewebe		Gewebe + Verglasun	_			
	Ts	Rs	As	C : gv = 0,59	D:gv=0,32	Tv		
SV 5% - OF 5%								
0202 Weiss	24	65	11	0,30 2	0,15 😉	23		
0220 Weiss Linen	23	58	19	0,34 2	0,17 2	21		
0207 Weiss Perlen	20	50	30	0,38 🕕	0,19 2	18		
0720 Perlen Linen	20	39	41	0,42 🕕	0,23 2	17		
0707 Perlen	17	34	49	0,44 🕕	0,24 2	15		
0210 Weiss Sand	19	50	31	0,38 🕕	0,20 😉	15		
0102 Grau Weiss	14	35	51	0,45 🕕	0,24 2	11		
0101 Grau	13	19	68	0,52 0	0,28 😉	10		
0110 Grau Sand	13	25	62	0,49 🕕	0,28 2	9		
3001 Charcoal Grau	7	10	83	0,55 💿	0,30 😉	7		
3006 Charcoal Bronze	7	6	87	0,56 0	0,31 2	7		
3030 Charcoal	7	5	88	0,56 0	0,31 😉	7		
SV 10% - OF 10%								
0202 Weiss	28	62	10	0,32 2	0,16 😉	27		
0220 Weiss Linen	27	56	17	0,36 🕕	0,18 😉	25		
0207 Weiss Perlen	25	50	25	0,38 🕕	0,19 2	22		
0210 Weiss Sand	24	49	27	0,39 🕕	0,20 2	21		
0720 Perlen Linen	24	37	39	0,43 🕕	0,23 😉	21		
0707 Perlen	21	33	46	0,45 🕕	0,24 2	19		
0102 Grau Weiss	19	31	50	0,47 🕕	0,25 😉	16		
0110 Grau Sand	17	23	60	0,49 🕕	0,27 😉	14		
0101 Grau	17	18	65	0,52 0	0,28 😉	14		
3006 Charcoal Bronze	12	6	82	0,55 💿	0,32 2	12		
3001 Charcoal Grau	11	9	80	0,54 0	0,31 😉	10		
3030 Charcoal	10	5	85	0,56 0	0,31 😉	10		

SERVICE +

- Berechnung des Gesamtenergiedurch-lassgrades g-tot (Verglasung + Sonnenschutz)
- Spektraldaten, sowie thermische und optische Leistungswerte auf Anfrage erhältlich
- Produktbeschreibungen
- A4-Muster und Prototypen
- Schulung zur Gewebefunktionalität

SV 1%						
3001		THE RESERVE AND DESCRIPTION OF THE PARTY OF	APPEARON PERSONS INVESTIGATION OF			
						anar an
				Simmed and magning in the control of the last of the last engine is an included in the		
637.6 07						
SV 3% 3001			enigi igiliya iyi iyi iyi iy iliyo iyi iyo iyo iyi igiliyo i ganyiliyili o iyo iyi iyo iyo		olgi grigi igʻilgiliyilgi Qilgi igʻilgi igʻilgi igʻilgi Madgugʻilgi igʻilgi igʻilgi	
						層 層 簡
SV 5% 3001						

SV 10% 3001

DIE MERMET-KOLLEKTION bietet eine große Auswahl an Geweben für Außen- und Innenanwendungen, von Transparenz bis zur vollständiger Verdunklung, um thermischen und optischen Komfort zu bieten.
Um andere Broschüren aus der Kollektion zu erhalten, kontaktieren Sie uns.

SCREEN VISION / DESIGN / THERMIC / LOW E

EXTERNAL SCREEN CLASSIC

SCREEN NATURE

 $\mathbf{BLACKOUT\,100\,\%}$

ACOUSTICS

58, chemin du Mont Maurin - 38630 Les Avenières Veyrins-Thuellin - Frankreich Tel. +33(0) 474 336 615 - Fax +33(0) 474 339 729